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ABSTRACT

Summary: An important computational step following genome-wide

association studies (GWAS) is to assess whether disease or trait-

associated single-nucleotide polymorphisms (SNPs) enrich for particu-

lar biological annotations. SNP-based enrichment analysis needs to

account for biases such as co-localization of GWAS signals to gene-

dense and high linkage disequilibrium (LD) regions, and correlations of

gene size, location and function. The SNPsnap Web server enables

SNP-based enrichment analysis by providing matched sets of SNPs

that can be used to calibrate background expectations. Specifically,

SNPsnap efficiently identifies sets of randomly drawn SNPs that are

matched to a set of query SNPs based on allele frequency, number of

SNPs in LD, distance to nearest gene and gene density.

Availability and implementation: SNPsnap server is available at

http://www.broadinstitute.org/mpg/snpsnap/.

Contact: joelh@broadinstitute.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 MOTIVATION

Genetic loci identified by genome-wide association studies

(GWAS) point to biology that help us to understand the etiology

of complex traits and diseases (Hirschhorn, 2009). A typical first

step following GWAS is to assess whether associated loci as a

group implicate biological pathways (Wang et al., 2010), or

whether associated single-nucleotide polymorphisms (SNPs) are

enriched for annotations such as non-coding functional elements

(Ward and Kellis, 2012) or missense variants (Lango Allen et al.,

2010). The simple approach, comparison of associated SNPs

with random sets of SNPs, is susceptible to bias from non-

random clustering of functionally related genes, and the greater

likelihood of associated SNPs to be within (large) genes and re-

gions of strong linkage disequilibrium (LD) and other potential

confounders (Hindorff et al., 2009). If not properly accounted

for by appropriate matching of random sets of SNPs, these

biases may lead to spurious enrichments; for instance, brain

pathways (typically containing large genes that are more likely

to harbor associated SNPs) will appear to be overrepresented in

most sets of GWAS loci (Raychaudhuri et al., 2010).
The SNPsnap Web server identifies randomly selected SNPs

with similar genetic properties as a set of query (associated)

SNPs. Random SNPs are matched based on minor allele fre-

quency, number of SNPs in LD (LD buddies), distance to near-

est gene and number of nearby genes (gene density). By using sets

of random but matched SNPs, investigators can compute enrich-

ment statistics on more appropriate negative controls to get an

unbiased empirical estimate of the significance of enrichment

results obtained with associated SNPs. We and others have pre-

viously used a similar approach (Gamazon et al., 2010; Lango

Allen et al., 2010; Nicolae et al., 2010; Maurano et al., 2012;

Schaub et al., 2012; Gamazon et al., 2013; Wood et al., 2014),

however currently there is no software tool that formally imple-

ments this approach.

2 IMPLEMENTATION

We used biallelic, uniquely mapped SNPs from the 1000

Genomes Project (Abecasis et al., 2012) genotype data and com-

puted the following properties (see also Supplementary

Material):

(a) Minor allele frequency: we partitioned SNPs into minor

allele frequency bins (using 1–2, 2–3, . . . , 49–50% strata).

(b) LD buddies: for each SNP, we counted the number of

‘buddy’ SNPs in LD at various thresholds (r240.1,

0.2, . . . , 0.9) [using PLINK v.1.07 (Purcell et al., 2007) to

compute LD].

(c) Distance to nearest gene: we computed the distance to the

nearest 50 start site using Ensembl gene coordinates (Flicek

et al., 2014). If the SNP was within a gene, we used the

distance to that gene’s start site.

(d) Gene density: we counted the number of genes in loci

around the SNP, using LD (r240.1, 0.2, . . . , 0.9) and

physical distance (100, 200, . . . , 1000kb) to define loci.

Next, we developed an algorithm to sample the best matching

SNPs given the genetic properties of the query SNPs (Fig. 1).

Because sampling of a sufficient number of SNPs exactly

matched to a given query SNP is infeasible, we allowed
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deviations between the query and matched SNP for the proper-

ties used in matching. The SNPsnap algorithm identifies sets of

matched SNPs for each query SNP as follows:

(1) In five uniformly spaced increments, increase the allowable

deviation for each of the properties, ending with the

prespecified maximum allowable deviation. For each

increment, identify matching SNPs, defined as SNPs

with genetic properties within the allowable deviations.

(2) If there are at least as many matching SNPs as requested,

sample without replacement the requested number of

SNPs from the matching SNPs and proceed to step 5.

(3) If the number of matching SNPs is less than the number of

requested SNPs, increment the allowable deviation and

return to step 1; if the maximum allowable deviation has

been reached, proceed to step 4.

(4) Sample with replacement from the matched SNPs identi-

fied in step 1.

(5) Proceed to the next query SNP.

For the default parameters, SNPsnap provides two visual and

two numeric scores that indicate how well the requested number

of SNPs could be retrieved (see Supplementary Material).

3 WEB SERVER

The query set of SNPs should be independent and must be

uploaded using rs-numbers or chromosomal coordinates.

SNPsnap allows for test of input SNPs’ independence. Besides

the number of SNP to be sampled, the investigator must specify

the maximum allowed deviation for each of the four properties.

The investigator can choose whether matched SNPs may contain

the query SNPs. The output consists of a matrix with query

SNPs as rows and matched SNPs as columns. The investigator

can optionally enable annotation of the SNPs to yield output

files that include the genetic properties, nearest genes and genes

in loci.

4 EXAMPLE

We used SNPsnap to illustrate how using properly matched

SNPs can avoid spurious results. We first retained the top 500

independent SNPs from a simulated GWAS based on random

phenotypes with no genetic basis, and retrieved a set of synapse

genes (see Supplementary Material). Next, we conducted a

Fisher’s exact test, which indicated that the synapse genes were

2.4-fold enriched at the random GWAS loci (P=0.005). We

then used SNPsnap to retrieve 10000 matched SNPs for each

of the 500 simulated GWAS SNPs and computed the fold en-

richment for each of the 10 000 SNP sets. From this we calcu-

lated an empirical P-value showing no enrichment of synapse

genes (P=0.16), as expected.
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